应用串联质谱技术分析几种重组蛋白药物的翻译后修饰

陶磊,丁有学,刘兰,李永红,范文红,饶春明,王军志

中国药学杂志 ›› 2015, Vol. 50 ›› Issue (19) : 1726-1730.

PDF(1036 KB)
PDF(1036 KB)
中国药学杂志 ›› 2015, Vol. 50 ›› Issue (19) : 1726-1730. DOI: 10.11669/cpj.2015.19.015
论著

应用串联质谱技术分析几种重组蛋白药物的翻译后修饰

  • 陶磊,丁有学,刘兰,李永红,范文红,饶春明*,王军志*
作者信息 +

Indentification of Several Kinds of Post-Translational Modifications in Recombinant Protein Pharmaceuticals Using MS/MS

  • TAO Lei, DING You-xue, LIU Lan, LI Yong-hong, FAN Wen-hong, RAO Chun-ming*, WANG Jun-zhi*
Author information +
文章历史 +

摘要

目的 应用串联质谱技术对几种重组蛋白药物的翻译后修饰进行分析。方法 首先将这几种蛋白分别进行蛋白酶切形成多肽片段,然后液相色谱-质谱联用测定其液质肽图,最后应用串联质谱技术分析几种蛋白的翻译后修饰信息。结果 分别对这些蛋白中存在的二硫键、相对分子质量相似肽段、O-糖基化位点以及N-糖基类型等翻译后修饰进行了分析确证。结论 串联质谱技术可在一定程度上弥补蛋白酶切的不足,为重组蛋白药物翻译后修饰的分析提供更加充分的证据。

Abstract

OBJECTIVE To identify several kinds of post-translational modifications in recombinant protein pharmaceuticals by MS/MS. METHODS Firstly the proteins were digested with enzymes, and the obtained peptides were analyzed by UPLC-MS. By MS analysis, peptides with post-translational modifications could be detected, then it was then identified by MS/MS. RESULTS Using MS/MS, the disulfide bonds, peptides with similar molecular mass, O-glycosylation site and the type of N-linked oligosaccharides were identified. CONCLUSION MS/MS analysis can make up for the deficiency of enzyme digestion in some extent, and provide more sufficient evidence for the identification of post-translational modifications.

关键词

串联质谱 / 重组蛋白 / 翻译后修饰 / 糖基化 / 二硫键

Key words

MS/MS / recombinant protein / post-translational modification / glycosylation / disulfide bond

引用本文

导出引用
陶磊,丁有学,刘兰,李永红,范文红,饶春明,王军志. 应用串联质谱技术分析几种重组蛋白药物的翻译后修饰[J]. 中国药学杂志, 2015, 50(19): 1726-1730 https://doi.org/10.11669/cpj.2015.19.015
TAO Lei, DING You-xue, LIU Lan, LI Yong-hong, FAN Wen-hong, RAO Chun-ming, WANG Jun-zhi. Indentification of Several Kinds of Post-Translational Modifications in Recombinant Protein Pharmaceuticals Using MS/MS[J]. Chinese Pharmaceutical Journal, 2015, 50(19): 1726-1730 https://doi.org/10.11669/cpj.2015.19.015
中图分类号: R917   

参考文献

[1] CORREA A,OPPEZZO P. Overcoming the solubility problem in E. coli: Available approaches for recombinant protein production [J]. Methods Mol Biol,2015, 1258:27-44.
[2] ROUTLEDGE S J,CLARE M. Setting up a bioreactor for recombinant protein production in yeast [J]. Methods Mol Biol,2012, 866:99-113.
[3] COX M M. Recombinant protein vaccines produced in insect cells [J]. Vaccine,2012, 30(10):1759-1766.
[4] LAI T,YANG Y, NG S K. Advances in mammalian cell line development technologies for recombinant protein production [J]. Pharmaceuticals (Basel),2013, 6(5):579-603.
[5] HOPKINS R F, WALL V E,ESPOSITO D. Optimizing transient recombinant protein expression in mammalian cells [J]. Methods Mol Biol,2012, 801:251-268.
[6] QIAN X,KRAFT J,NI Y, et al. Production of recombinant human proinsulin in the milk of transgenic mice [J]. Sci Rep,2014, 4:6465.
[7] WANG J Z. Development and Quality Control of Biopharmaceuticals(生物技术药物研究开发和质量控制) [M]. Beijing:Science Press, 2007:35-61.
[8] ROMEO M M,KO B,KIM J, et al. Acetylation of the c-MYC oncoprotein is required for cooperation with the HTLV-1 p30(Ⅱ) accessory protein and the induction of oncogenic cellular transformation by p30(II)/c-MYC [J]. Virology, 2015,476:271-288.
[9] WRIGHTON K H. Protein folding:Phosphorylation regulates IDP folding [J]. Nat Rev Mol Cell Biol,2015, 16(2):66.
[10] SUGIURA T,MARUYAMA H B. Factors influencing expression and post-translational modification of recombinant protein C [J]. J Biotechnol,1992, 22(3):353-360.
[11] PARK J H, WANG Z, JEONG H J, et al. Enhancement of recombinant human EPO production and glycosylation in serum-free suspension culture of CHO cells through expression and supplementation of 30Kc19 [J]. Appl Microbiol Biotechnol,2012, 96(3):671-683.
[12] BANKS D D. The effect of glycosylation on the folding kinetics of erythropoietin [J]. J Mol Biol, 2011, 412(3):536-550.
[13] SU D,ZHAO H,XIA H. Glycosylation-modified erythropoietin with improved half-life and biological activity [J]. Int J Hematol,2010, 91(2):238-244.
[14] CHUNG S,QUARMBY V,GAO X, et al. Quantitative evaluation of fucose reducing effects in a humanized antibody on Fcγ receptor binding and antibody-dependent cell-mediated cytotoxicity activities [J]. MAbs,2012, 4(3):326-340.
[15] ZEITLIN L,PETTITT J,SCULLY C, et al. Enhanced potency of a fucose-free monoclonal antibody being developed as an ebola virus immunoprotectant [J]. Proc Natl Acad Sci USA,2011, 108(51):20690-20694.
[16] TAO L, PEI D N, HAN C M, et al. Characterization and comparison of interferon reference standards using UPLC-MS [J]. Acta Pharm Sin(药学学报), 2015, 50(1):75-80.
[17] CAMPBELL M P,ROYLE L,RUDD P M. GlycoBase and autoGU: Resources for interpreting HPLC-Glycan data[J]. Methods Mol Biol, 2015,1273:17-28.
[18] GOTZ L,ABRAHAMS J L,MARIETHOZ J, et al. GlycoDigest: A tool for the targeted use of exoglycosidase digestions in glycan structure determination[J]. Bioinformatics, 2014,30(21):3131-3133.

基金

国家十二五科技重大专项“生物技术药物质量标准和质量控制技术平台”资助项目(2012ZX09304010)
PDF(1036 KB)

Accesses

Citation

Detail

段落导航
相关文章

/